Appraisal of Different Tomato Genotypes against Tomato Fruit Worm (*Helicoverpa armigera* Hub.) Infestation

Amjad Usman,*¹ Imtiaz Ali Khan,¹ Mian Inayatullah,¹ Ahmad Ur Rahman Saljoqi² and Maqsood Shah¹

¹Department of Entomology, The University of Agriculture, Peshawar, Pakistan ²Department of Plant Protection, The University of Agriculture, Peshawar, Pakistan

Abstract.- Screening of tomato genotypes were conducted to devise an integrated pest management strategy against tomato fruit worm, *Helicoverpa armigera*. Fourteen commercially available tomato genotype *viz*. Mission 102, Sultan, 027, Chinar, GS 5575, Sourabh, T 7008, R 165, RK 101, Riogrande, Roma, Bambino, Super Classic and Roma VF were tested for resistance against *H. armigera* infestation under field conditions at the New Developmental Farm (NDF) of the University of Agriculture, Peshawar during 2009 and 2010. The genotypes Chinar, Sourabh and Sultan had minimum fruit weight loss (18.98%, 21. 01% and 21.89%, respectively) as well as minimum number of infested fruits (21.40%, 23.87% and 25.43%, respectively) by the *H. armigera*. These genotypes R 165 and GS5575 had maximum loss in fruit weight (37.40% and 36.36%) as well as maximum number of infested fruit (39.40% and 40.47%) with larval population of 2.06 and 2.10 larvae/plant. Chinar yielded significantly higher (20752 kg/ha) than other genotypes while Bambino gave the lowest yield (9546 kg/ha). There was positive correlation between fruit damage on the weight basis and number basis. The correlation between *H. armigera* larval population and yield was found to be negative. Negative correlation was also found between yield and fruit damage both on weight basis and number basis. Over all, Chinar gave better results as it was pest resistant as well as high yielding than other tested genotype.

Key words: H. armigera infestation, tomato genotypes, pest resistance, tomato yield.

INTRODUCTION

Several factors (poor quality seeds, disease and insect infestation etc.) stand responsible for low tomato production in Pakistan. Considerable reduction in tomato yield due to insect pests has been reported (Hoffmann et al., 2007). Among the insect pests, Tomato fruit worm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is major threat to tomato crop causing significant yield loss (Talekar et al., 2006). Worldwide annual crop loss due to H. armigera alone is approximately 5 billion US dollar (Sharma, 2001). In Pakistan, 32-35% fruit infestation by H. armigera was observed in tomato (Latif et al., 1997), where as 53% fruit loss reported in Peshawar. was Khyber Pakhtunkhwa Province (Inayatullah, 2007).

The lack of awareness regarding genotypes resistant to insect pests has led to the haphazard and

injudicious use of pesticide. While, controlling Tomato fruit worm known as a polyphagous pest consumed around 80% of total pesticide in Pakistan (Shaheen, 2008). Due to environmental and health problems caused by pesticides (Ignacimuthu, 2007), alternative control measures that are ecologically safe and economically acceptable, should be focused.

Host plant resistance being compatible with other available pest management strategies is considered as an important component in IPM. Reduction in pest infestation to acceptable level has been reported due to the use of resistant variety alone or in combination with other control measures (Leuschner et al. 1985). However, there has been lack of information regarding resistance of commercially available tomato genotypes in Pakistan, particularly in Khyber Pakthunkhwa Province. The present study was therefore, aimed to evaluate the response of available tomato genotypes, including some new tomato hybrids against H. armigera in the field conditions for identifying most resistant genotype.

^{*} Corresponding author: ausman_ento@yahoo.com 0030-9923/2013/0001-0113 \$ 8.00/0

Copyright 2013 Zoological Society of Pakistan.

MATERIALS AND METHODS

The experiment was carried out at the New Developmental Farm (NDF) of The University of Agriculture Peshawar during 2009 and 2010. Fourteen genotypes including 9 F1 hybrids (RK 101, Mission 102, Sultan, 027, Chinar, GS 5575, Sourabh, T 7008 and R 165) and 5 varieties (Riogrande, Roma, Bambino, Super Classic and Roma VF) were screened in this study. Healthy (disease free) seedlings (about 3-4" tall) of all the genotypes were transplanted on ridges in separate plots, each measured 5.5 x 2.5 m. Plants were spaced 45 cm apart with 75 cm between the rows. The experiment was laid out in Randomized Complete Block Design with three replications. Normal agronomic practices (e.g., ploughing, manuring and irrigation) were conducted uniformly and no preventative measures were applied. Data on the following parameters were recorded.

a. *Mean number of larvae/plant:* Number of larvae/plant was recorded by randomly selecting 5 plants per genotype in each replication. Data were recorded weekly started from the first appearance of larvae till the final harvest of the crops and their mean was calculated.

b. Percent fruit damage: After each picking, fresh weight and number of tomato fruits were recorded for each plot. The damaged fruits (presence of holes by fruitworm) were separated from the sound tomato fruits, weight and counted. The percent damage was determined by the following formula:

Percent fruit weight loss =	weight of damaged fruits x 100 total weight of tomato fruits
Percent damaged fruits =	<u>number of damaged fruits</u> x 100 total number of tomato fruits

c. *Total yield (kg/ha):* The weight of sound fruits of each picking was recorded individually for each plot and the yield was calculated by adding the yield from all pickings for each plot. The yield was then converted into per hectare basis with the following formula.

Statistical analysis

The data recorded were subject to statistical analysis using Gen Stat and the means were compared by LSD Test at P=0.05.

Table I	Mean H. armigera larval population/plant on	n
	14 tomato genotypes during 2009-2010.	

	Mean larval nonulation/plant			
Genotype	2009	2010	Overall mean (2009-2010)	
GS 5575 R 165 027 Sourabh Sultan T 7008 Chinar Mission 102 RK 101 Super Classic Bambino Riogrande Roma VF Roma LSD (0.05) Years 2009 2010	1.91 a 1.80 ab 1.67 a-c 1.34 de 1.40 c-e 1.61 b-d 1.15 e 1.23 e 1.16 e 1.72 ab 1.90 a 1.70 ab 1.55 b-d 1.74 ab 0.2784	2.20 ab 2.40 a 2.08 b-d 1.99 cd 1.95 cd 2.20 ab 1.89 d 1.97 cd 2.07 b-d 2.07 b-d 2.00 ab 2.08 b-d 2.14 bc 2.09 b-d 2.05 b-d 0.2097	2.06ab 2.10 a 1.87 bc 1.66 de 1.67 de 1.90 bc 1.52 e 1.60 e 1.61 e 1.96 a-c 1.99 a-c 1.92 bc 1.82 cd 1.89 bc 0.1709 1.56 b 2.09 a	
Significance level Interaction Year x Genotype		** Significance level **		

Means in columns following similar letters are not significantly different at $\alpha = 0.05$ (LSD Test). ** Significant at P < 0.01

RESULTS AND DISCUSSION

Screening of tomato genotypes on the basis of H. armigera larval population/plant

The *H. armigera* larval population/plant recorded on different tomato genotypes during 2009 and 2010 are given in Table I. In 2009, significantly highest larval population/plant (1.90 and 1.91 larvae) was recorded on genotype Bambino and GS 5575, respectively and lowest larval population/ plant was recorded on genotypes Chinar (1.15 larvae), RK 101 (1.16 larvae) and Mission 102 (1.23 larvae). In 2010, the genotype R 165 had significantly highest larval population/plant (2.40 larvae) while lowest larval population/plant (1.89 larvae) was recorded on genotype Chinar. The average of two years data revealed that significantly minimum number of larvae/plant was recorded on genotypes Chinar (1.52 larvae), Mission 102 (1.60 larvae) and RK 101 (1.61 larvae). The genotype R 165 had significantly higher larval population/plant (2.10 larvae). Response of different genotypes towards larval population has been the focus of many researchers. Similar kind of study has also been reported by Ahmed (1994), Khanam *et al.* (2003), Sajjad *et al.* (2011) and Ashfaq *et al.* (2012) who assessed genetic susceptibility of tomato genotypes different from those in the present study.

The variation in the larval population may be due to differences in various physical plant factors. The fruits skin particularly the pericarp toughness has been reported responsible for resistance to fruit borer (Rath and Nath, 1995). Ashfaq et al. (2012) found negative correlation between thickness of leaf lamina with fruit infestation and larval population. Clissold et al. (2006) reported that tough leaves prohibit feeding of early larval instars and reduce their development. Trichome density could be another physical plant factor attributed to resistance. The leaves pubescence restricts *H. armigera* larval movement (Ramalho et al., 1984; Gerard, 1978). Glandular trichomes on tomato leaves release certain sticky and toxic chemicals that cause the larvae mortality of (Srinivasan and Uthamasamy, 2005). Gurr and McGrath (2002) reported negative correlation ($r = -0.96^*$) between trichomes densitv population. and larval Comparatively, oviposition, larval and moth population was higher in 2010 than in 2009 because of variation in abiotic factors (e.g., temperature, humidity, rain fall and wind speed). The present findings are comparable to that of Srivastava et al. (1992) and Sharma et al. (2012), who found positive relationship between the larval and moth population.

Screening of tomato genotypes on the basis of fruit weight loss

Table II revealed that during 2009 the genotype Chinar had significantly lowest fruit weight loss (17.74%) and R 165, GS 5575 and Riogrande had significantly highest fruit weight loss *viz.*, 34.25, 33.97 and 33.50%, respectively (all

being non significant from each other). During 2010, again genotype Chinar along with Sourabh and Sultan had minimum fruit weight loss (20.22, 22.60%) while R 165 showed 21.55 and significantly maximum fruit weight loss (40.55%). mean results for 2009-2010 showed The significantly lowest fruit weight loss in Chinar (18.98%) and Sourabh (21.01%). H. armigera damage was highest on genotypes GS 5575 (36.16%) and R 165 (37.40%). On weight basis, H. armigera fruit damage was comparatively low in 2009 than in 2010.

Table II.-Mean fruit weight loss by H. armigera larvae
feeding on 14 tomato genotypes during 2009-
2010.

	Mean fruit weight loss (%)			
Constra			Overall	
Genotype	2009	2010	mean	
			(2009-2010)	
GS 5575	33.97 a	38.35 ab	36.16 ab	
R 165	34.25 a	40.55 a	37.40 a	
027	31.22 ab	34.19 b-d	32.70 cd	
Sourabh	20.48 ef	21.55 f	21.01 i	
Sultan	21.17 ef	22.60 f	21.88 hi	
T 7008	32.85 ab	35.03 bc	33.94 bc	
Chinar	17.74 f	20.22 f	18.98 i	
Mission 102	22.54 e	29.35 de	25.95 fg	
RK 101	24.22 de	25.30 ef	24.76 gh	
Super Classic	30.61 a-c	37.19 ab	34.26 bc	
Bambino	29.28 bc	30.72 с-е	30.00 de	
Riogrande	33.50 a	33.09 b-d	33.29 b-d	
Roma VF	27.36 cd	31.08 cd	29.22 ef	
Roma	31.95 ab	33.69 b-d	32.82 b-d	
LSD (0.05)	3.8095	5.4943	3.4279	
Years				
2009			27.93 b	
2010			30.93 a	
Significance level			**	
Interaction		Significance level		
Year x		-	ns	
Genotype				

Means in columns following similar letters are not significantly different at $\alpha = 0.05$ (LSD Test).

** Significant at $P \le 0.01$

ns Non significant

Screening of tomato genotypes on the basis of number of damaged fruits

In 2009 significantly minimum number of fruits (20.32%) of genotype Chinar, was damaged while maximum number of fruits damaged was of

GS 5575 (37.95%). In 2010 also, lowest number of damaged fruits (22.47%) were recorded for genotype Chinar, while the highest number of damaged fruits was for R 165 (45.29%). Mean number of fruits damaged for the two years (2009 and 2010) was significantly lower in Chinar (21.40%) and Sourabh (23.87%), whereas significantly highest in R 165 (40.74%) and GS 5575 (39.43%) (Table III).

Table III.-Mean fruit number damage by *H. armigera* of
14 tomato genotypes during 2009-2010.

	Mean number of damaged fruits (%			
Conotrmo –		Overall		
Genotype	2009	2010	mean	
			(2009-2010)	
GS 5575	37.95 a	40.92 a-c	39.43 ab	
R 165	36.20 ab	45.29 a	40.74 a	
027	36.70 ab	36.24 cd	36.47 b-d	
Sourabh	21.92 de	25.82 fg	23.87 gh	
Sultan	22.90 de	27.95 f	25.42 fg	
T 7008	34.59 ab	40.63 a-c	37.61 bc	
Chinar	20.32 e	22.47 g	21.40 h	
Mission 102	27.53 с	37.33 b-d	32.43 e	
RK 101	25.00 cd	30.45 ef	27.72 f	
Super Classic	33.63 b	40.22 bc	36.93 bc	
Bambino	33.86 ab	36.74 b-d	35.30 с-е	
Riogrande	35.46 ab	40.84 a-c	38.15 a-c	
Roma VF	33.31 b	34.33 de	33.82 de	
Roma	34.02 ab	41.42 ab	37.72 а-с	
LSD (0.05)	4.2278	4.7914	3.0600	
Years				
2009			30.96 b	
2010			35.76 a	
Significance level			**	
Interaction	Significance level			
Year x		-	ns	
Genotype				

Means in columns following similar letters are not significantly different at $\alpha = 0.05$ (LSD Test).

** Significant at $P \le 0.01$

ns Non significant

The present results revealed that none of the tested genotypes were completely resistant to the attack of *H. armigera*. Some earlier researchers had screened tomato genotypes for resistance against *H. armigera* and found none of the genotypes were completely free from *H. armigera* attack (Khanam *et al.*, 2003; Selvanarayanan and Narayanasamy, 2006a,b; Sajjad *et al.*, 2011). Genotypes with minimum fruit damage had lowest larval population

because of dense trichomes that reduced larval feeding and restricted movement of the neonate larvae (Satpute *et al.*, 1994). Negative correlation of dense trichomes has been reported with larval feeding (Selvanarayanan and Narayanasamy, 2006b). The presence of phenols and acidity of tomato fruits due to their antibiotic effects also contributes to the host plant resistance against *H. armigera* (Kashyap and Verma, 1987; Banerjee and Kallo, 1989; Selvanarayanan and Narayanasamy, 2006 b).

Table IV.-Mean marketable yield (kg/ha) of 14 tomato
genotypes during 2009-2010.

	Mean marketable vield (kg/ha)			
Genotype	2009	2010	Overall mean (2009-2010)	
GS 5575 R 165 027 Sourabh Sultan T 7008 Chinar Mission 102 RK 101 Super Classic Bambino Riogrande Roma VF Roma LSD (0.05) Years 2009 2010 Significance level Interaction Year x	10684 f 10061 f 13617 d 18150 bc 19412 ab 13287 de 21677 a 18430 bc 16756 c 11161 ef 10110 f 11519 d-f 10757 f 13787 d 2298.5	10418 f 10632 ef 12458 e 16994 bc 18438 ab 12438 e 19826 a 15055 d 16212 cd 10571 f 8983 f 9638 f 9752 f 12426 e 1829.0	$\begin{array}{c} 10551 \ e \\ 10346 \ e \\ 13038 \ d \\ 17572 \ bc \\ 18925 \ b \\ 12862 \ d \\ 20752 \ a \\ 16743 \ c \\ 16484 \ c \\ 10866 \ e \\ 9546 \ e \\ 10578 \ e \\ 10254 \ e \\ 13106 \ d \\ 1365.6 \\ \hline 16.93 \ a \\ 14.89 \ b \\ ** \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Significance level Interaction Year x Genotype		Signific	** ance level **	

Means in columns following similar letters are not significantly different at $\alpha = 0.05$ (LSD Test).

** Significant at $P \le 0.01$

The genotype GS 5575 and R 165 proved to be relatively more susceptible for having significantly maximum fruit damage. Lack of trichomes and the presence of high nitrogen content (Minkenberg and Ottenheim, 1990) and high non reducing sugar content, low phenols and acidity (Selvanarayanan and Narayanasamy, 2006b) and low ascorbic acid (Sharma *et al.*, 2008) are considered responsible for susceptibility of tomato genotypes. Some earlier researchers have reported varied degree of fruit damage in both resistant and susceptible tomato genotypes (Ferry and Guthbert, 1973; Lal, 1985; Sajjad *et al.*, 2011). Variation in fruit damage may be due to differences in tomato genotypes and their genetic potential that resists *H. armigera* attack. Fruit infestation by *H. armigera* was comparatively high in 2010 than in 2009 due to high pest infestation in 2010. Our results are in conformity with those of Srivastava *et al.* (1992) and Singh and Sachan (1993) who found positive correlation between *H. armigera* egg and larval population and pheromone trap catches.

 Table V. Correlation
 among
 H.
 armigera
 larval

 population/plant,
 damaged
 fruit
 and
 yield

 parameters
 during
 2009-2010
 during
 during

Correlation coefficient (r value)			
2009	2010	Cumulative	
0.8810**	0.8734**	0.9263**	
0.8815**	0.8334**	0.9062**	
-0 8282**	-0 8784**	-0 8887**	
0.0202	0.0704	0.0007	
0.0641**	0.001.0**	0.0046**	
0.9641**	0.9812***	0.9846**	
-0.8463**	-0.9021**	-0.8955**	
-0.7725**	-0.9255**	-0.8723**	
	Correl: 2009 0.8810** 0.8815** -0.8282** 0.9641** -0.8463** -0.7725**	Correlation coefficien 2009 2010 0.8810** 0.8734** 0.8815** 0.8334** -0.8282** -0.8784** 0.9641** 0.9812** -0.8463** -0.9021** -0.7725** -0.9255**	

** Significant at $P \le 0.01$

* Significant at $P \le 0.05$

ns Non significant

Screening of tomato genotypes on the basis of yield (kg/ha)

The genotype Chinar gave significantly higher fruit yield of 21677 kg/ha, while genotype R 165 gave significantly lower fruit yield of 10061 kg/ha. In 2010 also significantly higher tomato yield was obtained in genotype Chinar (19826 kg/ha), whereas lower yield was observed in genotype Bambino (8983 kg/ ha). The mean yield for the two years was significantly higher for genotype Chinar (20752 kg/ha) and lower for Bambino (9546 kg/ha). In general the yield of tomato crop in 2009 was comparatively higher than that of 2010.

Variation in tomato yield was observed among the tested genotypes. Although such variation may be due to genetic yield traits, but this may also be due to the response of these genotypes to H. armigera attack. In the present study, the genotypes with lower pest population gave higher vield. Yield variation is usually reported among tomato genotypes (Rehman et al., 2000; Khan et al., 2001; Rida et al., 2002; Ahmad et al., 2007). Biotic and abiotic factors are usually considered important for yield variation. Genotype Chinar had less larval population per plant and gave maximum yield, while Bambino yielded minimum because of high larval population. Similar findings were also reported by Heinrichs (1994) and Ashfaq et al. (2012) who showed that that resistant genotypes show high yield than susceptible genotypes.

Correlation among H. armigera *larval population, damaged fruit and yield parameters during* 2009-2010

Mean values of correlation among pest and host parameters are given in Table V. In 2009, larval population was positively correlated with loss of fruit weight (r = 0.8810) as well as with number of fruits infested (r = 0.8815). Correlation was positive for 2010 (r = 0.8734 and r = 0.8334) as well as mean for the two years (r = 0.9263 and r =0.9062, respectively).

Highly significantly positive correlation was found between damaged fruits on weight loss and number of fruits infested for both 2009 (r = 0.9641) and 2010 (r = 0.9812) and means for the two years (r = 0.9846).

Larval population was significantly negatively correlated with tomato yield in both 2009 and 2010 (r = -0.8282 and -0.8784, respectively), and also for mean of 2009 and 2010 collectively (r = -0.8887). Correlation was significantly negative between yield and fruit damage on weight as well as number basis for both the years.

The present results revealed a positive effect

of larval population on tomato fruit losses in both years ($r = 0.9263^{**}$). Similar positive correlation between larval density and fruit damage has also been reported by Zahid *et al.* (2008). Fruit weight loss and number of fruits damaged both contribute to fruit damage, usually with reportedly positive correlation (Kashyap and Verma, 1984, 1987; Sahu *et al.*, 2005). The present results also showed similar trend as reported by earlier researches.

Significantly negative correlation (r = 0.8887^{**}) between larval population and tomato yield was observed. Our results are comparable to that of some previous researchers (Khanam *et al.*, 2003; Sahu *et al.*, 2005). Since *H. armigera* moth population in 2010 was higher and resultantly the oviposition and larval population were higher in 2010 compared to 2009, so the tomato yield was comparatively higher in the latter year. This showed that *H. armigera* population negatively affects tomato yield (Stavridis *et al.*, 2008).

CONCLUSIONS

The present study revealed that none of the tested genotypes were free from H. armigera infestation. However, based on the mean fruit weight loss (%) by *H. armigera* larvae (2009-2010), the genotypes Chinar, Sultan and Sourabh were found to be comparatively resistant, while genotype R 165 and GS 5575 were found to be most susceptible to H. armigera infestation. The larval population per plant was negatively correlated with fruit damage on weight as well as on number basis. The fruit damage on weight basis and on number basis showed positive correlation with each other, while both were negatively correlated with yield. The above genotypes performed better in the field and need to be further explored. In this context, investigating the physical and biochemical plant characters of the studied genotypes from a view point of host plant resistance to H. armigera, would be useful contribution towards development of a resistant variety that can be incorporated into an IPM strategy.

ACKNOWLEDGEMENTS

The authors are grateful to the Higher Education Commission Pakistan for financial

support to undertake this study.

REFERENCES

- AHMAD, F., KHAN, O., SARWAR, S., HUSSAIN, A. AND AHMAD, S., 2007. Performance and evaluation of tomato cultivars at high altitude. *Sarhad J. Agric.*, 23: 581-585.
- AHMED, I., 1994. Cultivar resistance and chemical control of tomato fruitworm, Heliothis armigera Hb. on tomato (Lycopersicon esculentum Mill.). Ph.D. thesis, Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan, pp. 191.
- ASHFAQ, M., SAJJAD, M., ANE, M. N. U. AND RANA, N., 2012. Morphological and chemical characteristics of tomato foliage as mechanisms of resistance to *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) larvae. Afr. J. Biotech., 11: 7744-7750.
- BANERJEE, M.K. AND KALOO, L., 1989. Role of phenols in resistance to tomato leaf curl virus (*Fusarium wilt*) and tomato fruit borer in *Lycopersicon. Curr. Sci.*, 58: 575-576.
- CLISSOLD, F, SANSON, G.D. AND READ, J., 2006. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. J. Anim. Ecol., 75: 1000-1013.
- FERRY, R.L. AND GUTHBERT, F.P., 1973. Factors affecting evaluation of fruit worm resistance in tomato. J. Am. Soc. Hort. Sci., 9: 457-459.
- GERARD, B.M., 1978. Controlling pest of tropical legumes, current recommendation strategies. *Pestci. Sci.*, 9: 465-477.
- GURR, G.M. AND McGRATH, M., 2002. Foilar Pubesence and resistance to potato moth (*Phthorimaea* operculella) in Lycopsersicon spp. Ent. exp. Appl., 103: 35-41.
- HEINRICHS, E.A., 1994. Development of multiple pest resistant crop cultivars. *J. agric. Ent.*, **11**: 225-253.
- HOFFMANN, H., HARDIE, D. AND BURT, J., 2007. Tomato pests in the home garden and their control. *Dept. Agric. Aust. Garden Note*, **34**: 82-88.
- IGNACIMUTHU, S., 2007. Insect pest management; meeting report. Curr. Sci., 92: 1336-1337.
- INAYATULLAH, M., 2007. Biological control of tomato fruitworm (Helicoverpa armigera) using egg parasitoid Trichogramma chilonis (Trichogrammatidae: Hymenoptera) and Chrysoperla carnea (Chrysopidae: Neuroptera). First Annual Technical Report, HEC Funded Project, pp. 99.
- KASHYAP, R.K. AND VERMA, A.N., 1984. Development and survival of fruit borer, Heliothis armigera on borer resistant and susceptible tomato genotype. XVII. Inter. Cong. Entomol. Hamburg, F. R. Germany Aug 20-26. pp. 46-50.

- KASHYAP, R.K. AND VERMA, A.N., 1987. Factors imparting resistance to fruit damage by *Heliothis* armigera in some tomato phenotypes. *Insect Sci. Applic.*, 8: 111-114.
- KHAN, A.N., WAHAB, M.F. AND IQBAL, J., 2001. Evaluation of four tomato cultivars grown at Agriculture Research Station, Chitral for yield and quality. Sarhad J. Agric., 17: 353-354.
- KHANAM, U.K.S., HOSSAIN, M., AHMED, N., UDDIN, M.M. AND HOSSIAN, M.S., 2003. Varietals screening of tomato to tomato fruit borer *Helicoverpa armigera* (Hub.) and associated plant characters. *Pak. J. Biol. Sci.*, 6: 413-431.
- LAL, U.P., 1985. Field resistance of some cultivar against tomato fruit *H. armigera* in Tropoli. *Bull. Ent.*, **26**: 96-97.
- LATIF, M., AHEER, G.M. AND SAEED, M., 1997. Quantitative losses in tomato fruits by Heliothis armigera Hb. Abstr. PM-9. Third International Congress of Entomological Science, Pak. Entomol. Society, March 18-20, 1997. National Agricultural Research Center, Islamabad. 95 p.
- LEUSCHNER, K., TANEJA, S. L. AND SHARMA, H.C., 1985. The role of host-plant resistance in pest management in sorghum in India. *Insect Sci. Applic.*, 6: 453-460.
- MINKENBERG, O.P.J.M. AND OTTENHEIM, J.G.W., 1990. Effect of leaf nitrogen content of tomato plant on preference and non preference of leaf mining fly. *Oceologia*, 83: 291-298.
- RAMALHO, F.S., PARROTT, W.L., JENKINS, J.N. AND McCARTY, J.C.J., 1984. Effects of cotton leaf trichomes on the mobility of newly hatched tobacco budworms (Lepidoptera: Noctuidae). J. econ. Ent., 77: 619-621.
- RATH, P.C. AND NATH, A. P., 1995. Influence of plant and fruit characters of tomato on fruit borer infestation. *Bull. Ent.*, **6**: 60-62.
- REHMAN, F., KHAN, S., FARIDULLAH AND SHAFIULLAH, 2000. Performance of different tomato cultivars under climatic conduction of northern areas (Gilgit). *Pak. J. biol. Sci.* 3: 833-835.
- RIDA, A.S., MUHAMMAD, A.A., EREIFIJ, I.E. AND HUSSIAN, A., 2002. Evaluation of thirteen open pollinated Cultivars and three hybrids of tomato (*Lycopersicum esculentum*) for yield physiological disorder, seed production and vegetative growth. *Pak. J. agric. Res.*, **17**: 290-296.
- SAHU, I.K., SHAW, S.S. AND GUPTA, A.K., 2005. Relative preference of tomato genotypes by fruit borer, *Helicoverpa armigera* (Hueb.). *Nat. J. Pl. Improv.*, 6: 89-91.
- SAJJAD, M., ASHFAQ, M., SUHAIL, A. AND AKTHAR, S., 2011. Screening of tomato genotypes for resistance to tomato fruit borer (*Helicoverpa armigera*) in Pakistan. *Pak. J. agric. Res.*, **48**: 59-62.

- SATPUTE, U.S., BHALERAO, P.D., THAKARE, H.S., SUPARE, N.R. ND SARNAIL, D.N., 1994. Evaluation of some cotton genotypes for their reaction to *Heliothis* armigera Hub. Punjabrao Krishi Vidyapeeth. Res. J., 18: 136-137.
- SELVANARAYANAN, V. AND NARAYANASAMY, P., 2006a. Assessment of tomato germplasm for resistance to fruit borer *Helicoverpa armigera* Hubner. *J. Veg. Sci.*, **12**: 71-79.
- SELVANARAYANAN, V. AND NARAYANASAMY, P., 2006b. Factors of resistance in tomato accessions against the fruit worm, *Helicoverpa armigera* (Hubner). *Crop Protect.*, **25**: 1075-1079.
- SHAHEEN, N., 2008. Is organic forming suitable solution for Pakistan. SDPI Res. News Bull., 15: 78-81.
- SHARMA, H.C., 2001. Cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera): Biology and management. Crop Protect. Compend. CAB International, Wallingford, pp. 70.
- SHARMA, K.C., BHARDWAJ, S.C. AND SUNIL, K., 2008. Biochemical factors of resistance in tomato varieties against fruit borer, *Helicoverpa armigera*. *Environ*. *Ecol.*, 26: 1135-1137.
- SHARMA, K.P., KUMAR, U., VYAS, S., SHARMA, S. AND SHRIVASTAVA, S., 2012. Monitoring of *Helicoverpa* armigera (Hubner) (Lepidoptera: Noctuidae) through pheromone traps in chickpea (*Cicer arietinum*) crop and influence of some abiotic factors on insect population. *IOSR J. Environ. Sci. Toxicol. Fd. Tech.*, 1: 44-46.
- SINGH, K.N. AND SACHAN, G.C., 1993. Spodopetra litura male moth catches in pheromone trap and their relation ship with oviposition in groundnuts field at Pantnagar, India. Insect Sci. Applic., 14: 11-14.
- SRINIVASAN, R. AND UTHAMASAMY, S., 2005. Does host plant chemistry influence feeding and ovipositional behavior of fruitborer in tomato. J. Veg. Sci., 11: 107-116.
- SRIVASTAVA, C.P., PIMBERT, M.P. AND REED, W., 1992. Monitoring of *Helicoverpa armigera* with light and pheromone trap. *Insect Sci. Applic.*, 3: 265-268.
- STAVRIDIS, D.G., GLIATIS, A., DELIGEORGIDIS, P.N., GIATROPOULOUS, C., GIATROPOULOUS, A., DELIGEORGIDIS, N.P. AND IPSILANDIS, D.G., 2008. Cotton production in the presence of *Helicoverpa* armigera (Hub) in central Greece. *Pak. J. biol. Sci.*, **11**: 2490-2494.
- TALEKAR, N.S., OPEN, R.T. AND HANSON, P., 2006. *Helicoverpa armigera* management: a review of AVRDC's research on host plant resistance in tomato. *Crop Protect.*, 5: 461-467.
- ZAHID, M.A., ISLAM, M.M., REZMA, M.H., PRODHAN, H.Z. AND BEGUM, M.R., 2008. Determination of economic injury levels of *Helicoverpa armigera* (Hubner) in chickpea. *Bangladesh J. agric. Res.*, 33: 555-563.
 - (Received 11 August 2012, revised 8 December 2012)